Analytic solutions to the advective contaminant transport equation with non-linear sorption

Author(s):  
Daichao Sheng ◽  
David W. Smith
2021 ◽  
Author(s):  
Adna Koš ◽  
Michal Kuráž

<p>The emission of metal ions in the environment has increased in recent times and since metal ions are not biodegradable, they belong to the cumulative toxins. Contamination of the environment with metal ions poses a serious danger to the entire ecosystem, agricultural production, quality of food and water, as well as to the health of humans and animals. This study investigates sorption as one of the processes which can be used for pollutants removal and efficiency of certain sorbent materials. Specifically, we focus on development and validation of non-linear Langmuir model and non-linear Freundlich model. Their application in sorption experiments is examined by applying different error functions and statistical methods which are employed to calculate the error divergence between observed data and predicted data of sorbate-sorbent system. Presented non-linear sorption models are developed by using programming language Fortran, and the data analysis is obtained by using different tools and packages in programming language R. Many authors are using linear sorption models in the way that they would linearize non-linear sorption models. It is evident that linear sorption models are used due to their simplicity in parameters estimation. We use approach of trying different algorithms and tools in programming language R in order to find the best objective function. This study shows that both non-linear Langmuir model and non-linear Freundlich model can be used for experimental data representation. The results also denote that better estimation and the better fit is given by Langmuir model due to divergence in error functions and graphical representation itself. The choice of sorption model has a great influence on the prediction of solute transfer and great care should be taken in selection of convenient approach.</p>


2020 ◽  
Vol 146 ◽  
pp. 107642
Author(s):  
Wesley Ford ◽  
Emiliano Masiello ◽  
Christophe Calvin ◽  
François Févotte ◽  
Bruno Lathuilière

2017 ◽  
Vol 43 (1) ◽  
pp. 27-33
Author(s):  
Andrzej Aniszewski

Abstract One of the most important problems concerning contaminant transport in the ground is the problem related to the definition of parameters characterizing the adsorption capacity of ground for the chosen contaminants relocating with groundwater. In this paper, for chloride and sulfate indicators relocating in sandy ground, the numerical values of retardation factors (Ra) (treated as average values) and pore groundwater velocities with adsorption (ux/Ra) (in micro-pore ground spaces) are taken into consideration. Based on 2D transport equation the maximal dimensionless concentration values (C*max c) in the chosen ground cross-sections were calculated. All the presented numerical calculations are related to the unpublished measurement series which was marked in this paper as: October 1982. For this measurement series the calculated concentration values are compared to the measured concentration ones (C*max m) given recently to the author of this paper. In final part of this paper the parameters characterizing adsorption capacity (Ra, ux/Ra) are also compared to the same parameters calculated for the two earlier measurement series. Such comparison also allowed for the estimation of a gradual in time depletion of adsorption capacity for the chosen sandy ground.


Sign in / Sign up

Export Citation Format

Share Document